Résoudre dans R les équations suivantes : a) sin(3x) = -1 b) cos 3x = sin x c) 2sin² x - sin x = 0
Question
a) sin(3x) = -1
b) cos 3x = sin x
c) 2sin² x - sin x = 0
1 Réponse
-
1. Réponse anylor
a) sin (- pi/2) = -1
=> sin(3x) = sin ( -pi/2)
=> 3x = -pi/2 +2kpi
ou 3x = pi -pi/2 +2kpi k € Z
x= -pi/2*3 +2/3kpi = - pi/6 + (2/3) kpi
ou
3x = (pi -pi/2) +2kpi = pi /2 +2kpi = >
x = pi/ 6 + (2/3 ) kpi k € Z
b) b) cos 3x = sin x
formule du cours sin x = cos( pi/2 - x)cos 3x = cos( pi/2 - x)
3x = (pi/2) - x +2kpi => 4x = pi/2 +2kpi => x = pi/8 + 2/4kpi = pi/8 +pi/2
ou
3x = -( (pi/2) - x))+2kpi => 2x = -pi/2 +2kpi => x = -pi /4 + 2/2kpi = -pi /4 + kpi
2sin² x - sin x = 0sinx( 2sinx -1) =0 => sin x = 0 ou 2sin -1 = 0
sin x = 0 => x = 0 +2kpi ou x = -pi +2kpi
2sin -1 = 0 => 2sinx = 1 => sin x = ½
x = pi/6 +2kpi ou x = 5pi/6 +2kpi k€Z